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ABSTRACT 
FEM has been carried out to investigate the eigen-mode of a square cross section waveguide filled with two different  

dielectrics. Vector Helmholtz equation was re-configured as transverse space dependent form to facilitate FEM. The 

eigen-equation of FEM was established from element equations of triangular mesh. For the transverse vectot field, the 

equation was constructed using tangential edges of the element mesh. The equation for the transverse vector potential 

component was made basing on its nodal points. These equations were combined into a gloval square matrix to 

calculate the eigen-modes. TE and TM eigen-modes influenced by the interface were obtained using the Krylov-Schur 

iteration method. As a result, each transverse vector fields and their vector potential component have been revealed 

by schematic representation to identify their physical property. And spectra of TM eigen-mode were compared with 

results of the theoretical calculation. 

 

KEYWORDS: FEM, eigen-mode, Helmholtz euation,  Krylov-Schur iteration method, TE and TM mode. 

     INTRODUCTION 
It has been well known that the interface between two different dielectrics dominantly characterize the eigen-property 

of the waveguide[1]. By Snell's law, the beam cannot be propagated through the interface of different dielectrics when 

its incident angle is greater than the critical angle. It is also known that partially remained evanescent beam from the 

incident beam would be going along the interface between dielectrics. Although it would disappear shortly after 

producing, understanding about their eigen-property may give an important physical meaning to various fields[2]. 

However, it may not be easy matter to understand these property even though the interface made with simple 

geometrical structure. Theoretical attempts to understand the eigen-property have not yet provided any satisfying 

results coincide with reality. 

As an alternative to those difficulties, numerical analysis may be utilized for a proper understanding of the optical 

properties of the various interfaces. Among them, it has been well known that FEM(Finite element method) is the 

most prominent numerical analysis method[3]. In this study, we investigated the influence of the interface on the 

eigen-modes forming in the waveguide by FEM. A cross section of the waveguide is constructed with two different 

dielectrics. The interface between them is formed along the breadthwise direction. It is assumed that the waveguide 

has constant dielectrics along the longitudinal direction. In the course of FEM analysis, the cross section was divided 

into triangular mesh. The eigen-matrix equation was constructed using tangential edges and nodes of triangular 

element meshes. Tangential edges and nodes were used as calculating variables for transverse vector fields and their 

vector potential component respectively. 

The eigen-modes were obtained by using the Krylov-Schur iteration method[4]. TE(Transverse Electric) and 

TM(Transverse magnetic) modes could be calculated by giving different boundary conditions for them. Each columns 

of the similarity transforming matrix contain the eigen-mode of  transverse vector field and its vector potential 

component simultaneously. Among the eigen-modes, several prominent TE and TM vector fields accompanying with 

their vector potential component were revealed by schematic presentation. To understanding the characteristics of 

their eigen-property, these spectra were compared with results of homogeneous waveguide. And in order to confirm 

the calculation reliability, these spectra were also compared with results from the theoretical calculation. 

 

FINITE ELEMENT FORMULATION 
The characteristic electromagnetic wave of the waveguide depend on the spacial distribution of the dielectric materials. 

In this study, it was assumed that the waveguide are constructed with two different dielectrics as fig.1. 
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Fig. 1  The Cross Section of the Waveguide 

 

The vector Helmholtz equation would be used in describing the wave property in the waveguide of square cross 

section. It is described as following equation[5] 

𝛁⃗⃗ × (𝒑𝛁 × 𝑭⃗⃗ ) − 𝒌𝒐
𝟐𝒒𝑭⃗⃗ = 𝟎                                        (𝟏) 

Where 𝑘𝑜 is the wave number and, for𝐹 = 𝐸⃗ (electric field strength), p = 1/𝜇𝑟(𝜇𝑟: relative permeability μ/𝜇𝑜), q =

𝜀𝑟(𝜀𝑟 : relative permittivity ε/𝜀𝑜 ) and, for 𝐹 = 𝐻⃗⃗  (magnetic field strength), p = 1/𝜀𝑟, q = 𝜇𝑟 . For convenience of 

calculation, the common notations 𝐹 , 𝑝  and q  would be used to relate these values without differentiating 

electromagnetic field modes. The eigen-equation has been established from FEM. The shape functions for the 

triangular element mesh are calculated as following 

{
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where 𝑎𝑖 = 𝑥𝑗𝑦𝑘 − 𝑥𝑘𝑦𝑗, 𝑏𝑖 = 𝑦𝑗 − 𝑦𝑘 , 𝑐𝑖 = 𝑥𝑘 − 𝑥𝑗  ( i, j and k are cyclical  ordering) and A is the area of the 

triangular element mesh. Relating with these shape functions, the constant tangential edge vectors for the element 

mesh are given by[6] 

𝑊⃗⃗⃗ 
𝑚 = 𝐿𝑚(𝑁𝑖∇⃗⃗ 𝑡𝑁𝑗 − 𝑁𝑗∇⃗⃗ 𝑡𝑁𝑖)                                      (3) 

where ∇⃗⃗ 𝑡=
𝜕

𝜕𝑥
𝑥̂ +

𝜕

𝜕𝑦
𝑦̂, 𝐿𝑚is the length connecting nodes i and j.  It is more convenient to express these vectors by 

using the shape function coordinates. 
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𝑚 =

𝐿𝑚

4𝐴2
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where 𝐴𝑚 = 𝑎𝑖𝑏𝑗 − 𝑎𝑗𝑏𝑖   

𝐵𝑚 = 𝑐𝑖𝑏𝑗 − 𝑐𝑗𝑏𝑖  

𝐶𝑚 = 𝑎𝑖𝑐𝑗 − 𝑎𝑗𝑏𝑖  

𝐷𝑚 = 𝑏𝑖𝑐𝑗 − 𝑏𝑗𝑐𝑖 = −𝐵𝑚  

With these tangential edge vectors and shape functions, the transverse vector fields and their vector potential 

component of each element mesh can be written as  

{

𝐹𝑥

𝐹𝑦

𝐹𝑧

} = [
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The Galerkin method of weighted residual has been used to construct the eigen-equation. The envelope function 

concept for the element vector 

{𝐹} = {
𝐹 𝑡
𝐹𝑧′

} exp (−𝑗𝛽) 

was used where β is a propagation constant. The eigen-equation was obtained from the (0,1) Pade approximation of 

propagation scheme at the beginning position[7] 

[𝐴]{𝐹} = −
1

2𝑘𝑜𝑛𝛽
[𝐵]{𝐹}                                           (7) 

where  [𝐴] = [
[𝐺] [𝐸]

[𝐹] [𝐷] − 𝑘𝑜
2[𝐼]

] 
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[𝐵] = [
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and  for the calculational stability 𝐹𝑧
′ = 𝑗

𝜕

𝜕𝑧
𝐹𝑧 was adopted. The matrices components were calculated as following 
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In these representations, subscripts for N and 𝑊⃗⃗⃗  indicate the node and edge numbers respectively. These element 

matrices have been assembled over all triangular elements to obtain a global eigen-matrix equation. 

As mentioned in the previous study, it has been well known that the Krylov-Schur iteration method is the most reliable 

technique for finding the prominent eigen-modes[8]. The method would be more efficiently implemented in finding 

specific eigen-pairs by performing the shift-invert strategy as following[9] 

𝜆𝑜{𝐹} =
[𝐵]

[𝐴] − 𝜎[𝐵]
{𝐹} = [𝑀]{𝐹}                           (8) 

where 𝜆𝑜 =
1

−
1

2𝑛𝑘𝑜𝛽
−𝜎

. The sparsity and symmetry of the eigen-equation would be lost, but by this strategy the 

convergent rate is more promoted at the specific value σ . Subsequently, the Krylov-Schur iteration method is 

performed on this square matrix [M]. 
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RESULTS AND DISCUSSION 

 

 

Fig. 2 Eigen-modes and Propapation Numbers 

 

In this study, the eigen-modes influenced by the interface of two dielectrics were investigated. As can be seen from 

fig.1, the waveguide consisted of two dielectrics having different dielectric constant. The lateral surface of the 

waveguide was assumed to be a perfect conductor. In calculating process, this assumption provides convenience to 

obtain TM modes by ignoring the variables on the surface. 

As a result, spectra are revealed schematically in fig.2. These results were obtained by performing the Krylov-Schur 

iteration on the square matrix [𝑀] of eq. 8. The eigen-modes were the column vectors of the similar transforming 

matrix which convert the square matrix to a Shure form. The eigen-values were calculated by converting each diagonal 

component of the Schur matrix into value −
1

2𝑛𝑘𝑜𝛽
=

1

𝜆𝑜
+ 𝜎  reversing the shift-invert strategy. The propagation 

constants calculated from this relation were  written in the blanket under each spectrum. The reflectivity n was 

assumed to be an average value of the waveguide. The wave number was set to be 𝑘𝑜 = 1 for convenience. The eigen-

modes have been represented with two components. The one is for the transverse electromagnetic vector field. The 

other is vertical component of vector potential of waveguide. The former was resulted from the tangential edge vectors 

and the latter was obtained from the nodes of the triangular element. The left columns of fig. 2(a), (b), represents 

transverse modes which have been obtained by applying eq. 5  to corresponding tangential edge variables of the 

triangular elements. The right columns of fig. 2(a), (b), represent components of their corresponding vector pontential 

resulted by applying eq. 5 to their node variables. The spectra of fig.2(a) are TE modes which represent the standing 

wave formed in the waveguide of the opened lateral boundary. As can be seen from these spectra, the peak position 

occurs along to the interface. The spectra of fig.2(b) are TM modes which represent the standing wave formed in the 

waveguide of closed lateral surface. From these representations, it can be identified that their maximum amplitudes 

occur at the minimum points of TE modes. 
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It has been identified that, eigen-modes are developed especially at the interface of two dielectrics. Unlike 

homogeneous waveguide, the eigen-modes in this system tend to reflect the characteristics of the interface. As a 

comparison, several prominent eigen-modes formed in a homogeneous medium are illustrated in fig. 3. In general, the 

eigen mode is determined dominantly by boundary conditions of the corner, surface and the interface etc.. The spectra 

in fig.3 suggest that the corner or surface may have affected the eigen-modes. As can be seen in fig. 2, the eigen-

modes are formed around the interface tightly. By comparing these spectra, it has been identified that there are clear 

differences between them. So, it has been confilmed that the eigen-modes in this study relies on the interface 

dominantly. In reality, finding a specific eigen-mode has been depended entirely on the specific value σ of the shift-

invert strategy eq.8. This value has been selected through a lot of trials and errors. Finally, these values  have been 

determined to be –3.955 and –400 for TE and TM modes respectively. 

 

 

Fig. 4 FEM and theoretical spectra of TM modes 

Generally, to understand the properties of propagating waves in the waveguide, it would be demanded to understand 

a stable eigen-mode. Among the eigen-modes obtained in this study, TM modes revealed the more stable and 

prominent characteristics at low eigen-number than TE modes. TM modes of the low eigen-number are shown in fig.4. 

Fig.4(a) is schematic representation of TM modes extending to fig.2(b). Fig.4 (b) is the spectra basing on the 

theoretical calculation of C. A Balanis[10]. These spectra were obtained using the following vector potential function 

𝐹𝑦~𝐴𝑐𝑜𝑠(
𝑚𝜋

𝐿
𝑥)sin (

𝑛𝜋

𝐿
(𝑏 − 𝑦))                               (9) 

where parameters m, n are the mode numbers of the spectra. b is the position of the interface from the lower surface 

of the waveguide. And L is the width of the waveguide. At first glance, the schematic representations for the potential 

function of TM 1 3 and TM 1 5 seem not to be the same with FEM. But these spectra can be made to be coincide with 

Figure 3Eigen-modes in the homogeneous waveguide 
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each other by shifting the phase as like fig. 5. This figure represents the spectra of TM 1 3 and TM 1 5 resulting from 

shifting the phase π/2. By comparing these spectra, it could be identified that the peak positions and the shapes are 

the same with each other. The amplitudes are not important factors in comparing the properties of these spectra. 

Usually, these values have been arbitrarily adopted for convenience of the schematic representation. So, it may be 

understood that these are the same spectra describing the eigen-modes of the rectangular wave guide filled with two 

different dielectrics. From these relation, it has been confirmed that FEM would be used to identify influence of the 

interface for more complex waveguide system. 

 

 

Fig. 5 Spectra resulted from the phase shift 

 

CONCLUSION 
To understand the eigen-property of the waveguie influenced by interface, the eigen equation was constructed using 

FEM. The Krylov-Schur iteration method has been applied to this equation to obtain the eigen-pairs. From  the spectra, 

it could be identified that eigen-modes are dominently distributed arround the interface without differentiating TE or 

TM modes. These characteristics are distinguished from the results of  the homogeneous waveguide. By comparing 

to the spectra based on the theoretical calculation, it would be confirmed that FEM may be applyed to understand the 

eigen-property of the waveguide influenced by the more complex interface. 
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